

#### Lunar Power Beaming Tower and Architecture

MVA 2020 Workshop

Nov 9-10, 2020

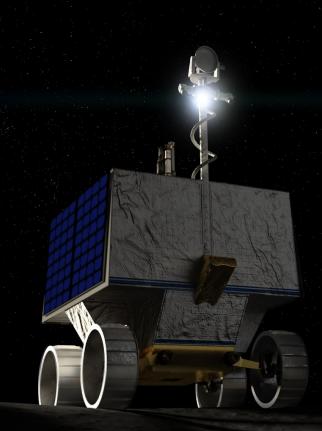
Kolemann Lutz lutz.kolemann@gmail.com

#### Outline

- 1. Fundamentals for Off-world Development
- 2. Key Challenges for Power Beaming
- 3. NASA Watts on Moon Competition Details
- 4. Lunar Surface Power Beaming Prototype
- 5. Lunar Tower ConOps
- 6. Enabling Water Ice Excavation Missions
- 7. Power Beaming Architecture
- 8. Cost Analysis: Energy on Surface
- 9. Project Key Questions

## **Fundamentals for Off-world Development**

- 1. Power Availability
- 2. Low-cost Communications
- 3. Availability of water and other resources
- 4. Surface Mobility


# **Key Challenges for Power Beaming**



Altitude/Access ibility of PEL's

Power Availability \$10,000 per kg to Surface

#### **NASA Watts on Moon Challenge**



#### **Rover Requirements, Assumptions**

- Provides up to 10 or 20 kW electrical power
- Generate and deliver 100W/hr continuously
- 1 1.5km power beaming capability
- Power only during illuminated periods, ≥ 300 hours

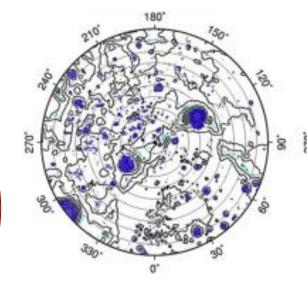
#### South Pole vs. North Pole

#### **Power: South**

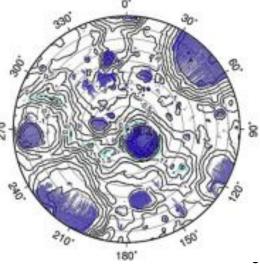
**Resources: South** 

Communications: N or S

Mobility & Terrain: N > S


#### N ice sparsely spread out

| Size Distribution of Permanently Shadowed Regions |                   |                   |  |  |  |  |
|---------------------------------------------------|-------------------|-------------------|--|--|--|--|
|                                                   | N Pole (80-90deg) | S Pole (80-90deg) |  |  |  |  |
| > 1 km sq                                         | 1,457             | 892               |  |  |  |  |
| > 5 km sq                                         | 344               | 314               |  |  |  |  |
| > 10 km sq                                        | 182               | 177               |  |  |  |  |
| > 25 km sq                                        | 68                | 91                |  |  |  |  |
| > 50 km sq                                        | 37                | 59                |  |  |  |  |
| > 100 km sq                                       | 17                | 30                |  |  |  |  |
| > 200 km sq                                       | 7                 | 13                |  |  |  |  |
| > 400 km sq                                       | 0                 | 4                 |  |  |  |  |
| > 600 km sq                                       | 0                 | 3                 |  |  |  |  |
| > 1,000 km sq                                     | 0                 | 2                 |  |  |  |  |
| Total PSR Area                                    | 12,866 km sq      | 16,055 km sq      |  |  |  |  |


#### Assumptions: 100 kW solar power supply, 93% total efficiency

| _unar Development Power (kWh) | Nonpolar | N Pole | N Pole 10m | S Pole | S Pole 10 m |
|-------------------------------|----------|--------|------------|--------|-------------|
| Power available during day    | 35,400   | 59,868 | 61185      | 63019  | 65915       |
| Max Power per month           | 17,700   | 50625  | 52876      | 56093  | 61367       |
| Actual Power per month        | 16461    | 47081  | 49175      | 52167  | 57071       |
| Power Losses                  | 1239     | 3544   | 3701       | 3927   | 4296        |
| Average kWh Available         | 23.25    | 66.5   | 69.46      | 73.68  | 80.61       |

#### North Pole PSR Peaks of Eternal Light, >88



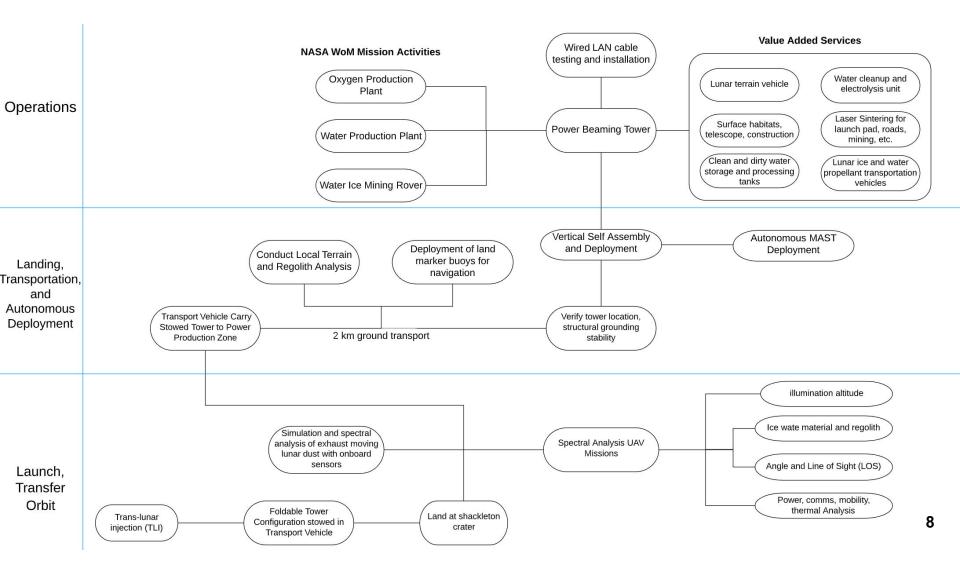
### South Pole PSR Peaks of Eternal Light, >88



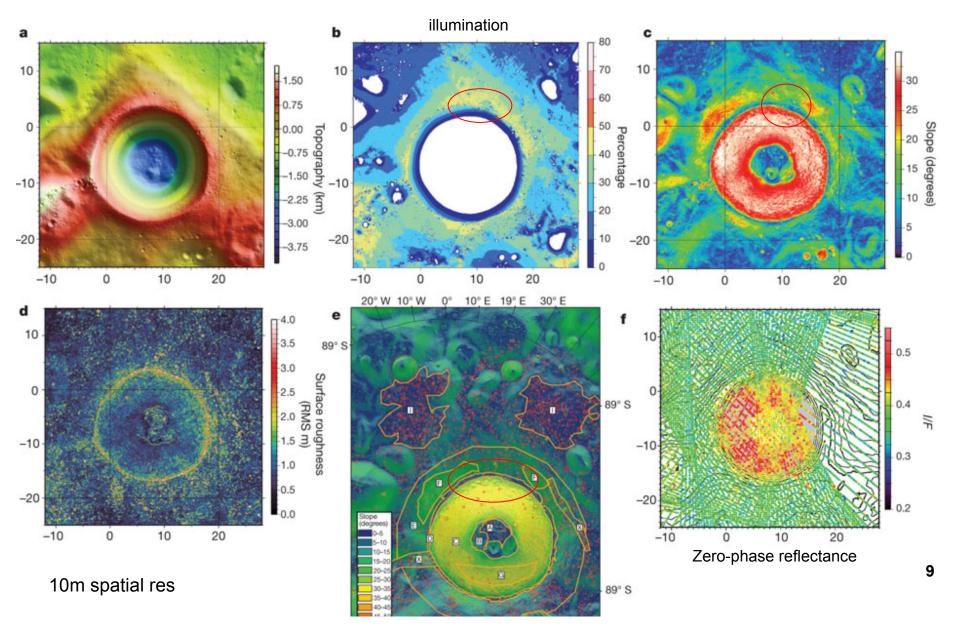
#### Lunar Surface Power Beaming Prototype

#### WoM Mission Activities

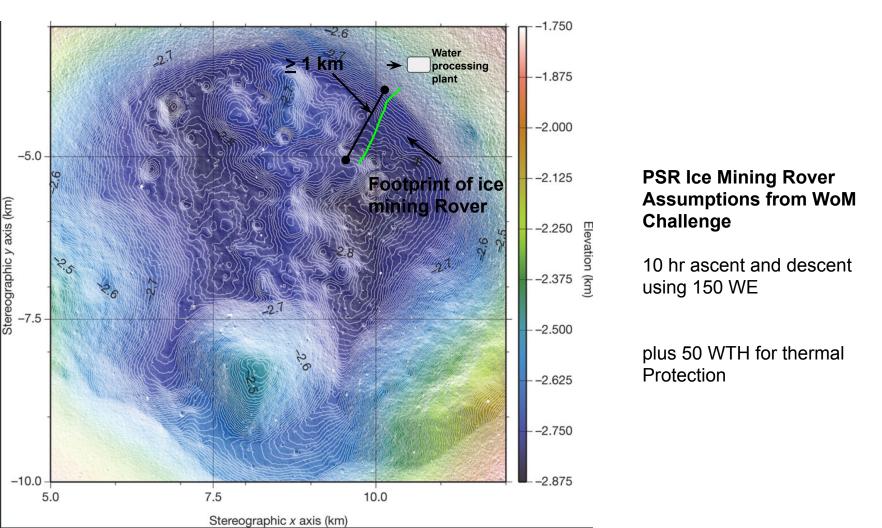
#1: Deliver power for a mobility platform operating inside the crater to collect and deliver water bearing material


#2: Deliver power for a water production plant operating inside the crater to extract and purify water from delivered material.

#3: Address thermal energy needs of an oxygen production plant outside the crater

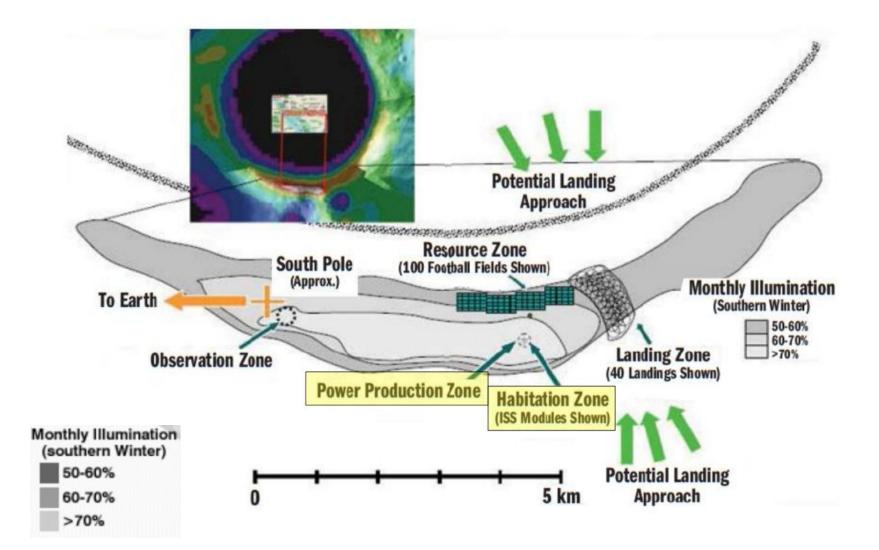

#### **Mission Components**

- Power Beaming Platform and Laser
- Stowed Tower Infrastructure
- Autonomous Transport Vehicle
- Low cost UAV


### Lunar Tower ConOps



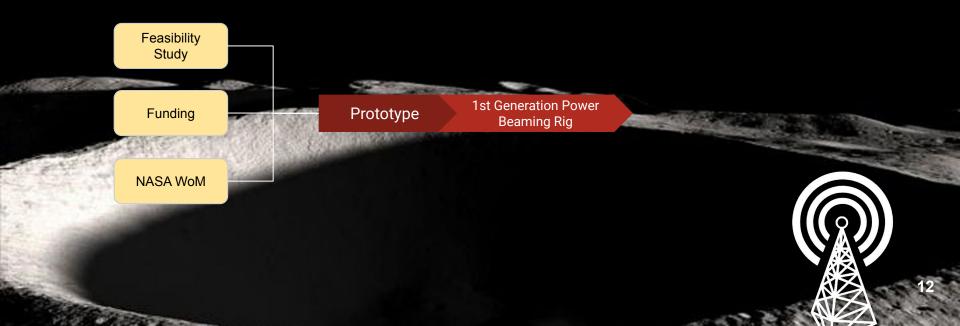
### **Characterization of Shackleton Crater**




### **Enabling Water Ice Excavation Missions at Shackleton Crater**



1 0


#### **Supply Power for One of First Lunar Cities**



# **Project Road Map**

#### Lunar Laser Power Beaming Rig

- Small prototype reduces risk and initial stakeholder costs
- Dual purpose comms/power services for shackelton
- Electronically steered phase-locking gimbaled lasers able to rotate~360deg possibly on circular track to correspond with the Lunar day/night cycle
- Increase in surface area and availability at higher altitude of tower platform enables multiple solid-state laser transmission systems and possible landing and repair from lunar UAS
- Service-utility-based model is scalable across other PSRs



## **Project Key Questions**

| Fundamental Challenges                                                                                                                     | Power/Communication                                                                                                                                                                                             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| What is desired illumination altitude for solar collection and targeted elevation range of tower at desirable side of Shackleton?          | Is it more efficient to position solar collectors at base of tower and transmit energy through optical fiber to gimballed laser at apex?                                                                        |  |  |  |
| Who would be considered local competitors and customers?                                                                                   | What are power requirements to transport main components to site location and to autonomously build tower infrastructure upward?                                                                                |  |  |  |
| What is optimal mobility platform path, velocity, and accessible power beaming area of interest? Integrate more research on PSR topography | Does sunlight on ground provide enough power to deploy tower? If so, how long to charge?                                                                                                                        |  |  |  |
| What is optimal split/amount of electronically steered phase-locking gimbaled lasers on top of tower structure?                            | How to determine surface area size of solar panel to meet stabilization and surface power requirements?                                                                                                         |  |  |  |
| Technical Challenges                                                                                                                       | Tower Design Challenges                                                                                                                                                                                         |  |  |  |
| What are optimal power beaming angular degrees of freedom to service partners?                                                             | What is optimal transport vehicle size to autonomously carry and deploy tower infrastructure? What other purposes might vehicle serve?                                                                          |  |  |  |
| What are optimal pointing requirements to beam to ground mobility platform? How about other alternative power beaming applications?        | What are optimal ground surface beam separation? Is traditional design of four vertical pillars desired for structural support?                                                                                 |  |  |  |
| What is avg/range of distance to and desired locations of water processing plant, ice mining tent, storage, dump sites?                    | How to maximize resource utilization and services of X amount of mid-tower junction platforms? Could self assembling thin film 'mosaic shades' form reflective and/or PV surface(s) along the side(s) of tower? |  |  |  |
| If ground attachment mechanism is optimal, what material and drilling/fastening mechanism to lunar regolith is logical                     | Is a perpendicular network of steerable parabolic mirrors desired toward top of lunar tower to maximize energy availability on surface?                                                                         |  |  |  |
| Could parabolic thin-film pointing reflectors be installed along upper sides of tower structure to loosen frozen volatiles for ice mining? | What are optimal methods for spacebots to access power/comms to make adjustments/improvements? (i.e. ladder, drone, elevator,pulley,cables)                                                                     |  |  |  |

# **Questions?**

4

snow

QUEEN